If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5.9t^2+2t-20=0
a = 5.9; b = 2; c = -20;
Δ = b2-4ac
Δ = 22-4·5.9·(-20)
Δ = 476
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{476}=\sqrt{4*119}=\sqrt{4}*\sqrt{119}=2\sqrt{119}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{119}}{2*5.9}=\frac{-2-2\sqrt{119}}{11.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{119}}{2*5.9}=\frac{-2+2\sqrt{119}}{11.8} $
| h-161=369 | | 3x^2-4x+5=20 | | 2(9s+11)-3s=3(5s+6)-19 | | 76=10x | | 2(9s+11)-3s=3(5s+6)-199 | | 2(9s+11)-3s=3(5s+6)-9 | | 3(4h-1)=4(3h-5) | | 7n−4(5−2n)=10 | | 6-3+4x+1=6x+2 | | -6=7+v/2 | | x=-0.6x^2+362x | | -2x+1-(3+-3x)=-4+(-x)-2 | | x+25+50+75=180 | | 52+d=63 | | 6x/11=4/15 | | (8x-56)=(5x+22) | | 3h=7(2/7−3/7h)−10 | | 2.5=0.4*5+b | | 3h=7(2/7−3/7h)−10 | | (8x-56)=(5+22) | | x+x+50=360 | | 2.50+s=11 | | 8x-50=62 | | 2.5=(0.4)5)+b | | 32=5x-18 | | 40+x+273=360 | | m/3-12=4 | | c+25-16=100 | | 80°+15x+5=680°+15x+5=6x+6 | | 36+8x=14x | | g^2+5g+3=0 | | 14y+7=105 |